
Chapter 9

Turbulent Jets

SUMMARY: This chapter is concerned with turbulent jets, namely their overall
shape and velocity structure. The first jets being considered are those penetrating
in homogeneous fluids, and the theory is later extended to consider the effects of a
cross-current and of ambient buoyancy. Puffs, which are intermittent injections of
momentum, are briefly considered.

9.1 Intrusion of a fluid into another

In environmental fluids, it is not a rare occurrence to see one fluid intruding into
another. Common examples are wastewater discharges from pipes into rivers or
lakes and plumes exiting from industrial smokestacks. In every case, a fluid with
some momentum and/or buoyancy exits from a relatively narrow orifice and intrudes
into a larger body of fluid with different characteristics, such as different speed,
temperature or contamination level.

It is helpful to categorize the various types of intrusion according to whether
they inject momentum, buoyancy or both in the ambient fluid, and whether or not
they persist in time (Table 9.1).

Table 9.1 Types of intrusions of a fluid into another and the correspond-
ing terminology.

Continuous Intermittent
injection injection

Momentum only Jet Puff
Buoyancy only Plume Thermal
Both momentum Buoyant jet Buoyant
and buoyancy or forced plume puff
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These flows can be characterized as partly turbulent because they create sit-
uations where the turbulence level is much higher in the vicinity of the intrusion
than in the surrounding fluid. The present chapter is devoted to momentum-only
sources, i.e. jets and puffs.

9.2 Turbulent Jets

Whenever a moving fluid enters a quiescent body of the same fluid, a velocity
shear is created between the entering and ambient fluids, causing turbulence and
mixing. In nature, the situation occurs where a river empties in a lake or estuary, or
occasionally when a wind blows through an orographic gap. But, perhaps the most
clearly defined jets are those produced when a fluid is discharged in the environment
through a relatively narrow conduit, such as an industrial discharge released through
a pipe on the bank of a river, lake, or coastal ocean.

Since the properties of a turbulent flow greatly depend on the geometry of the
flow domain and on the type of forces acting on the fluid, almost every situation is a
separate problem requiring specific investigation. We shall therefore limit ourselves
here to the most basic case, that of a jet penetrating in an otherwise quiescent fluid.

Figure 9.1: A water jet emerging from a nozzle into an otherwise undisturbed tank
of water. The jet water is colored to be made visible.

Laboratory investigations of jets penetrating into a quiescent fluid of the same
density (e.g., Figure 9.1) consistently reveal that the envelope containing the turbu-
lence caused by the jet adopts a nearly conical shape. In other words, the radius R
of the jet is proportional to the distance x downstream from the discharge location.
Further, the opening angle is always the same, regardless of the nature of the fluid
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(air or water) and of other circumstances (such as diameter of outlet and discharge
speed). This universal angle is 11.8◦ giving approximately 24◦ from side to opposite
side. It follows that the coefficient of proportionality between the jet radius R and
the downstream distance x from the outlet is tan(11.8◦)' 1/5:

R(x) =
1

5
x. (9.1)

Note that since the initial jet radius is not zero but the finite nozzle radius, equal
to half the exit diameter d, the distance x must be counted not from the orifice
but from a distance 5d/2 into the conduit. This point of origin is called the virtual
source (Figure 9.2).

Figure 9.2: Schematic description of a jet penetrating in a fluid at rest. The widen-
ing is linear with distance, and all cross-jet velocity profiles, except those very near
the orifice, are similar to one another, after suitable averaging over turbulent fluc-
tuations.

Observations suitably averaged over the many turbulent fluctuations (Figures
9.3 and 9.4) reveal that the velocity in the jet obeys a law of similarity: All cross-
sections appear identical, except for a stretching factor, and the velocity profile
across the jet exhibits a nearly Gaussian shape (bell curve). Therefore, we can
write:

u(x, r) = umax exp

(
− r2

2σ2

)
(9.2)

where x is the downstream distance along the jet (counted from the virtual source), r
is the cross-jet radial distance from its centerline, umax(x) is the maximum speed at
the centerline, and σ(x) is the standard deviation related to the spread of the profile
across the centerline. Since 4σ is the width of the distribution that encompasses
95% of the area under the curve (a traditional and practical measure borrowed
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Figure 9.3: Radial profiles of
mean axial velocity in a turbu-
lent round jet at Reynolds num-
ber Re = 95500. The dashed
lines indicate the half-width,
r50%, of each profile. (Adapted
from Pope, 2000)

Figure 9.4: Mean axial veloc-
ity versus radial distance in a
turbulent round jet at Reynolds
number Re ≈ 105. The veloc-
ity is scaled by the maximum
value at the center of the jet,
and the radial distance by r50%,
the distance at which the veloc-
ity drops to half of its maximum
value. (Adapted from Pope,
2000)
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Figure 9.5: The variation of the
maximum velocity in a round
jet versus distance along the
axis of the jet. (Adapted from
Pope, 2000)

from statistics) and since we know it to be the diameter 2R of the jet, we can write
4σ = 2R, i.e. σ = x/10, which leads to:

u(x, r) = umax exp

(
− 50r2

x2

)
. (9.3)

When a jet enters a fluid at rest, the sole source of momentum is that of the jet
itself, and the absence of external accelerating or decelerating forces implies that
the momentum flux in the jet’s cross-section remains constant downstream. Since
this flux is the momentum per unit volume, ρu (where ρ is the fluid density and u
the velocity), times the velocity u itself cumulated over the jet’s cross-section, the
statement that momentum is constant downstream is:∫ ∞

0

ρu2 2πrdr = ρU2 πd2

4
,

where U and d are respectively the average exit velocity and the orifice diameter,
which are usually known. After calculating the integral and by virtue of (9.3), we
deduce:

umax =
5d

x
U. (9.4)

In other words, the velocity along the centerline of the jet decreases inversely with
distance from the virtual source (i.e. the ratio U/umax increases linearly with
distance, as seen in Figure 9.5). To this maximum velocity corresponds an average
velocity ū defined by

ū =
1

πR2

∫ ∞
0

u 2πrdr =
umax

2
=

5d

2x
U. (9.5)
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The volumetric flux Q is not constant along the jet because of entrainment of
quiescent surrounding fluid. It can be calculated as follows

Q =

∫ ∞
0

u 2πrdr =
π

50
umaxx

2 =
π

10
dUx,

and is found to increase linearly with distance. The entrainment rate E can be
defined as the rate at which the volumetric flux grows with distance, namely

E =
dQ

dx
=

πdU

10
.

From this, we can also introduce an entrainment velocity, which is the radial
velocity v necessary to carry this entrainment (Figure 9.2). Volume conservation
along a section dx of the jet requires:

dQ = v dA,

where v is the transverse velocity feeding the entrainment and dA = 2πRdx is the
lateral area of this section of the jet. Substitution of dA and further substitution
of R in terms of the distance x provides:

dQ

dx
= 2πRv =

2πxv

5
.

Equating this with the previous expression for dQ/dx yields the value of the en-
trainment velocity:

v =
Ud

4x
=

umax

20
= 0.10 ū. (9.6)

It can be shown (see Problem 9-5) that the flux of kinetic energy behaves in the
opposite way; it decreases with distance.

The preceding remarks dealt with averaged properties of the jet, its width,
mean velocity and entrainment velocity. The velocity fluctuations can, too, be
characterized. The strong anisotropy of the jet leads to different statistics in the
different directions. Not surprisingly, the largest velocity fluctuations occur in the
axial direction. The turbulent velocity in this direction, denoted u∗ and defined as
the root-mean-square (rms) of the axial-velocity fluctuations squared, is found to
vary with both longitudinal distance x and radial distance r. Along the centerline,
u∗/ū ≈ 0.25 − 0.28 (Pope, 2000, page 105 and Figure 5.7). As one progresses
outward from centerline to the flank of the jet, the ratio u∗/ū increases without
bound, revealing that turbulent fluctuations are still active where the jet’s average
velocity is weak. In the orthogonal directions (radial and azimuthal), the rms
velocity is about half that in the axial direction.

When the jet contains a contaminant and the ambient fluid does not, this en-
trainment naturally causes dilution and the contaminant’s concentration decreases
downstream. Assuming that the concentration profile across the jet is a Gaussian
curve (Figure 9.6) similar to that for the velocity profile, we write:
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Figure 9.6: Maximum, mini-
mum and time-averaged mean
concentration in a planar jet.
(Adapted from Kotsovinos,
1975)

c(x, r) = cmax exp

(
− r2

2σ2

)
= cmax exp

(
− 50r2

x2

)
. (9.7)

where cmax(x) is the peak concentration along the centerline, a function of the
distance x. Conservation of the total amount of contaminant transported by the
jet (assuming that the ambient fluid is free of any contaminant) requires:∫ ∞

0

cu 2πrdr = coU
πd2

4
,

where co is the average concentration at the orifice. Calculation of the integral
provides the manner by which the centerline concentration varies along the jet:

cmax =
5d

x
co, (9.8)

Not surprisingly, because of the dilution generated by the entrainment of am-
bient fluid, the concentration of the contaminant diminishes with distance from
the discharge location. We shall return to this conclusion in our later analysis of
smokestack plumes.

9.3 Jets in a Cross-Flow

Text of section
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9.4 Puffs

Section 10.6 of Scorer (1997).

9.5 Jets in Stratified Fluids

Text of section

Problems

9-1. An underwater pipe with inner diameter of 25 cm discharges industrial wast-
water at the sustained rate of 0.12 m3/s. The contaminant carried by this
discharge increases the density above that of water but, at the same time, the
discharge is slightly warmer than the receiving lake water, so that there is no
net buoyancy effect. By which distance has the volumetric flowrate quadru-
pled from its initial value? And, how diluted is the industrial waste at that
point? (Define dilution as the ratio of the initial concentration to the local
value, to obtain a number larger than unity.)

9-2. A 16-cm underwater pipe discharges into a lake 0.02 m3/s of wastewater con-
taining 30 mg/L of nitrogen in the form of nitrates. What are the nitrogen
concentrations 10, 20 and 50 m away from the pipe’s end along the axis of the
jet? At which distance has the concentration fallen to 0.5 mg/L?

9-3. A nozzle or diffuser can be fitted onto the end of the pipe mentioned in the
preceding problem to reduce or enlarge its exit diameter. What should that
new diameter be to ensure that the concentration of nitrogen falls to 0.5 mg/L
at a distance of 15 m downstream of the discharge location?

9-4. For a given volumetric flux Q of discharge by a jet, which discharge creates a
more vigorous entrainment and more rapid dilution, one with a narrower pipe
diameter and higher exit velocity, or one with a wider pipe diameter and a
lower exit velocity?

9-5. Show that in a non-buoyant jet, the local Reynolds number Re based on the
local center velocity and local jet diameter is invariant with distance along the
jet. What does this imply for the smallest turbulent length scale dmin? For
simplicity, you may assume that the inertial range spans the entire spectrum
of turbulent length scales, from longest to shortest.
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9-6. Determine the way the energy flux KE (integral of ρu3/2 across the jet)
behaves as a function of distance x along the jet. Show that it decays with
distance and explain in a few words why this must be the case. By which
distance has the energy flux dropped to 25% of its upstream value at the exit
of the discharge pipe?

9-7. Define the energy dissipation rate ε as the loss of kinetic energy experienced by
the jet along its axis, per mass of fluid. In other words, with the kinetic-energy
flux KE defined as in the preceding problem, the drop KE(x)−KE(x+ dx)
over a stretch dx of the jet is equal to ε times the mass of fluid in that strectch.
Determine how fast ε decreases with distance along the jet.

9-8.

9-9.


