SOME USEFUL NUMBERS

Compiled by Benoit Cushman-Roisin

ENERGY PRODUCTION

1 barrel of oil weighs 106 kg .
1 barrel of oil holds 42 US gallons $=0.159 \mathrm{~m}^{3}=5.8 \times 10^{6} \mathrm{Btu}=6.12 \times 10^{9} \mathrm{~J}$ $10^{6} \mathrm{ft}^{3}\left(28300 \mathrm{~m}^{3}\right)$ of natural gas is equivalent to 172 barrels of crude oil

Combustion - Incineration:
1 kg of wood $\rightarrow 17.6$ MJ
1 cord of seasoned firewood (8'x 4 ' x 4 ') $\rightarrow 20$ million BTUs $=21,100 \mathrm{MJ}$
(Note: A typical woodstove is only 60-70\% efficient;
the rest of the heat goes out the chimney)
1 kg of wood pellets $\rightarrow 19.1$ MJ
1 kg of paper $\rightarrow 20 \mathrm{MJ}$
Domestic compost $\rightarrow 9,000$ to $10,000 \mathrm{BTUs} / \mathrm{lb}=22 \mathrm{MJ} / \mathrm{kg}$ in form of heat
1 kg of municipal garbage $\rightarrow 12 \mathrm{MJ}$
1 kg of polystyrene $\rightarrow 40 \mathrm{MJ}$
1 kg of dung $\rightarrow 15 \mathrm{MJ}$
1 kg of coal $\rightarrow 23$ to 42 MJ
1 kg of bitumous coal $\rightarrow 30 \mathrm{MJ}$
1 kg of crude oil $\rightarrow 43 \mathrm{MJ}$
1 kg of gasoline $\rightarrow 44$ to 47 MJ , or $31 \mathrm{MJ} / \mathrm{L}$ on volume basis
1 kg of natural gas $\rightarrow 43 \mathrm{MJ}$
1 gallon of liquified propane $\rightarrow 91,500 \mathrm{BTUs}=96.5 \mathrm{MJ}$, or $25.5 \mathrm{MJ} / \mathrm{L}$
1 kg of liquified natural gas $\rightarrow 35 \mathrm{MJ}$
1 kg of ethanol $\rightarrow 29.8 \mathrm{MJ}$
1 kg of methanol $\rightarrow 20 \mathrm{MJ}$
1 kg of hydrogen $\rightarrow 142.5 \mathrm{MJ}$
1 L of liquified hydrogen $\rightarrow 8.4 \mathrm{MJ}$
1 ton of Uranium-235 $\left({ }^{235} \mathrm{U}\right)=70 \times 10^{12}$ BTUs $=7.4 \times 10^{16} \mathrm{~J}$
Wood to ethanol conversion: 1 kg of wood yields 0.33 kg of ethanol.

WATER, OIL \& ENERGY CONSUMPTION

Average fuel efficiency:

personal vehicles in the USA: $24 \mathrm{mpg}(9.8 \mathrm{~L} / 100 \mathrm{~km})$
diesel freight trucks in the USA: 8.5 mpg (L/100 km)
Automobile at $55 \mathrm{mph}(90 \mathrm{~km} / \mathrm{h})$ consumes 28 kW of power
Energy used in transportation of freight:
Airplanes $\quad 31,600$ BTUs/ton-mile $=20.7 \mathrm{MJ} /$ ton-km
Trucks $\quad 4,400 \mathrm{BTUs} /$ ton-mile $=2.9 \mathrm{MJ} /$ ton-km
Trains $\quad 371$ BTUs/ton-mile $=0.24 \mathrm{MJ} /$ ton-km
Ships $\quad 411$ BTUs/ton-mile $=0.27 \mathrm{MJ} /$ ton-km
Energy used in transportation of people:
Private airplane 9,600 BTUs/passenger-mile $=6.3 \mathrm{MJ} /$ passenger-km
Air carrier $\quad 3,600 \mathrm{BTUs} /$ passenger-mile $=2.4 \mathrm{MJ} /$ passenger-km
SUV, light truck 5,900 BTUs/passenger-mile $=3.9 \mathrm{MJ} /$ passenger-km
Automobile $\quad 3,600 \mathrm{BTUs} /$ passenger-mile $=2.4 \mathrm{MJ} /$ passenger-km
Motorcycle $\quad 1,900 \mathrm{BTUs} /$ passenger-mile $=1.2 \mathrm{MJ} /$ passenger-km
Mass transit $\quad 3,000 \mathrm{BTUs} /$ passenger-mile $=2.0 \mathrm{MJ} /$ passenger-km
To produce 1 kg of plastics takes 2 kg of petroleum.
To produce a 2-gram computer chip
takes 32 kg of water, 1.6 kg of fossil fuel, 700 g of elemental gases (mainly N_{2}), and 72 g of chemicals
takes 41.2 MJ
A 2-gram computer chip consumes 15.0 MJ during its lifetime.
1 Liter of gasoline $\rightarrow 2 \mathrm{~kg}$ of CO_{2}
1 kWh of electricity from a typical fossil-fuel power plant $\rightarrow 0.689 \mathrm{~kg}$ of CO_{2}
Human person, sitting $=60$ watts $=860$ calories $/$ minute $=0.86$ Calorie $/$ minute Human person, running = 1000 watts $=14,340$ calories $/$ minute $=14.34$ Calorie/minute A human person requires a daily food intake of

2000 Calories $=2000 \mathrm{kcal}=2 \times 10^{6}$ calories $=7,940$ BTUs $=8370 \mathrm{~kJ}$
This is equivalent to a power consumption of about 100 watts/person
There are $3,500 \mathrm{kcal}$ in $1 \mathrm{lb}(0.454 \mathrm{~kg})$ of fat.
It has been estimated that it takes 10 times as much energy to produce, process, transport and refrigerate food as there is energy in the food (Nathan Lewis, Cal Tech).

Paper: 600 trees on an acre (1500 trees on 1 hectare)
each tree requires 130 gallons (490 L) of water for growth
50 gallons (189 L) of water for processing into paper
A cord of wood is $8 \mathrm{ft} x 4 \mathrm{ft} x 4 \mathrm{ft}$ and, if air dried and consisting of hardwoods weighs about 2 short tons, about $15-20 \%$ of which is water
A cord of wood makes 1000 to 2000 lbs of paper (depending on process)
1 metric ton of paper contains 440 reams
1 ream of paper contains 500 sheets and weighs $5 \mathrm{lbs}=2.27 \mathrm{~kg}$.
production of 1 metric ton of paper requires 17 trees
12,770 MJ of energy
$25 \mathrm{~m}^{3}$ of water
680 gallons ($2.57 \mathrm{~m}^{3}$) of oil
and generates 6.93 tons of CO_{2}.
In the USA, 36% of the fibers used to make new paper come from recycled sources (paperrecycles.org).

RECYCLING

Recycling 1 kg of steel saves: 1.25 kg of iron ore
0.50 kg of coal
0.02 kg of limestone

Energy Savings Per Ton Recycled*
(Million Btu's)

*Assumes recycled materials would otherwise have been disposed in a landfill.
Source: http://www.epa.gov/climatechange/wycd/waste/downloads/energy.pdf

Energy Consumed/Avoided from MSW Management Options(Million Btu's/Ton)				
Material	Source Reduction for Current Mix of Inputs*	Recycling	Combustion	Landfilling
Aluminum Cans	-103.25	-184.99	0.12	0.53
Steel Cans	-26.45	-19.97	-17.04	0.53
Glass	-6.49	-2.13	0.08	0.53
HDPE	-24.07	-18.99	-6.66	0.53
LDPE	-35.26	-24.10	-6.66	0.53
PET	-26.86	-22.20	-3.46	0.53
Corrugated Cardboard	-18.26	-13.00	-2.51	0.51
Magazines/third class mail	-32.83	-0.69	-1.87	0.52
Newspaper	-31.41	-16.49	-2.83	0.52
Office Paper	-31.90	-10.08	-2.42	0.49
Phonebooks	-37.83	-11.93	-2.83	0.52
Textbooks	-34.89	-1.03	-2.42	0.49
Dimensional Lumber	-3.41	0.59	-2.96	0.52
Medium Density Fiberboard	-11.19	0.86	-2.96	0.52
Food Scraps	NA	NA	-0.85	0.52
Yard Trimmings	NA	NA	-1.00	0.52
Mixed Paper	0.00	0.00	0.00	0.00
Broad Definition	NA	-6.65	-2.52	0.51
Residential Definition	NA	-6.65	-2.10	0.51
Office Paper Definition	NA	-13.95	-1.98	0.51
Mixed Plastics	NA	-20.53	-4.92	0.53
Mixed Recyclables	NA	-16.78	-2.65	0.51
Mixed Organics	NA	NA	-0.93	0.52
Mixed MSW	NA	NA	-1.78	0.52

* "Current mix" refers to the current mix of virgin and recycled inputs. Most new materials are produced using some percentage of recycled inputs. These calculations account for this percentage, rather than assuming new products are produced from 100 percent virgin inputs.

BUILDING ENERGY CONSUMPTION

Private (small) house:
($2,415 \mathrm{ft}^{2}$ in average, with 2.5 people in average $\rightarrow 966 \mathrm{ft}^{2} /$ person)
Space heating: 30\%
Appliances: 27\% (incl. washer, dryer, TV)
Water heating: 15\%
Space cooling: 9%
Refrigeration: 9\%
Lighting: 6\%
Cooking: 4\%
Total: 100%
Retail \& Warehousing: (from U.S. Dept. of Energy)
Typical store in a shopping mall: $9.7 \mathrm{kWh} / \mathrm{ft}^{2}$
Warehouse storage (> 10,000 ft^{2}): $5.0 \mathrm{kWh} / \mathrm{ft}^{2}$

To make 1 kg of	Energy required (in kJ) if from primary source	Energy required (in kJ) if from recycled source
Acrylonitrile	111,000	51,400
Aluminum - wrought	196,000	26,700
Aluminum - cast	189,000	26,000
Aluminum - sheet	279,720	40,320
Automotive fluids, (transmission, brake and steering fluids)	52,000	---
Automotive anti-freeze	76,000	---
Automotive engine oil	60,200	---
Alpha alumina	26,100	---
Beta alumina	267,000	---
Brass	100,000	45,000
Butadiene	111,000	51,400
Copper	60,000	45,000
Fiberglass	66,500	40,000
Glass	30,000	13,000
Glass - sintered	48,000	---
Iron	34,000	24,000
Lead	41,100	8,000
Magnesium - cast	284,000	27,200
Nylon	119,000	32,100
Polycarbonate	158,000	48,100
Polyester	95,800	50,000
Polyethylene terephthalate (PETE)	106,000	???
Polyethylene (PE)	98,000	56,000
Polypropylene (PP)	74,300	42,300
Polystyrene		
Polyurethane	72,100	44,600
PVC (polyvinylchloride)	65,400	29,300
Rubber	67,600	---
Sand	1,000	---
Sodium	107,000	---
Steel	40,000	18,100
Styrene	102,000	43,500
Sulfur	2,300	---
Zinc	53,000	15,900

