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Diffusion – Part 3:

With source and decay
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Dartmouth College

We now extends our analysis to include cases when the contaminant is not only diffusing 
but also replenished and decaying over time.

Recalling the earlier mass budget and 
applying it to an infinitesimal control 
volume of length Δx and cross-section A, 
we determine the import and export fluxes:

Adding source and decay in the diffusion equation
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and the budget becomes

Since the volume of the small control volume is V = AΔx,  
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If we note s = S / V, the source per volume (i.e., source density) and take the limit of 
a vanishing Δx, we get the differential equation

which is the same as before, except for the two new terms.
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Storage      Diffusion      Source      Decay

The solution corresponding to an instantaneous (at t = 0) and localized (at x = 0) 
release with decay and no continuous source aside the initial release of amount M is:
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Continuous release at a fixed location

As an application, consider the case of a continuous release at a fixed location, as is the 
case of a point source.  Because the time-dependent problem is rather difficult to solve 
and also because the practical question in such situation may be limited to finding the 
ultimate state, we shall consider here only the steady-state solution to the problem (by 
putting ∂c/∂c to zero).  Since the source is punctual (say, at x = 0), there is no source
anywhere else (s = 0), and the governing equation reduces to:
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The solution consists of two exponential functions:
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in which A and B are two constants of integration to be determined by application of 
two boundary conditions, and the exponent λ is found by substituting the exponential 
solution in the original differential equation.  We find:
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For the solution, we need to separate the domain on the left of the point source 
from the portion of the domain on the right side of the source. Applying the 
condition c → 0 as x → ±∞, we knock down the growing exponentials, leaving:
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Uniqueness of the concentration value at x = 0 demands continuity of c(0) and 
thus 

A = B.

This leaves a single unknown, the coefficient A.

This coefficient A is related to the amount being released.   For an amount 
(mass released per cross-sectional area of the domain and per time, in kg/m2.s), 
half of each by symmetry goes to each side, and thus:
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From which follows:
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Putting the pieces together, we arrive at the solution:
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Of interest is the maximum 
concentration:
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If spread is defined as the length 
of the region that contains 95% of 
the contamination, we have:
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Example application to the Chicago Ship Canal

We again return to our example with the Chicago Ship Canal and now take into account 
that benzene in water is subject to bacterial decay (aerobic degradation) at the known 
rate of K = 0.11/day.  If a stationary barge containing benzene and parked along the 
side of the canal has been leaking over the last few weeks at the estimated rate of 2.5 
liters per day, what is the benzene concentration in the canal water near the barge, and 
how far along the canal is the concentration in excess of the drinking-water standard of 
0.005 mg/L?

We assume steady state and uniformity of the benzene concentration across the canal 
and in the vertical.  (Recall: canal width= 48.8 m, depth= 8.07 m, along-canal diffusivity 
is D = 3.0 m2/s, and benzene density = 0.879 g/cm3.) 

To solve this problem, we first need to determine     , the rate of input per cross-area:M&
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We also rewrite the decay constant using seconds as the time unit:
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From these elements, we can determine the benzene concentration in the canal 
section at the position of the leaky barge:

This concentration exceeds the drinking standard cstd = 0.005 g/m3.  
We can find the distance x where the concentration falls to the drinking standard by 
inverting the solution:
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Thus, the benzene concentration exceeds the drinking standard in a zone of 
3.67 kilometers along the canal, centered on the barge position.

Course notes follow with additional examples, for reference only and not presented 
in lectures.


